Modeling Universal Instruction
Selection

Gabriel Hjort Blindell'?, Roberto Castafeda Lozano?',
Mats Carlsson?, and Christian Schulte’2

! School of ICT, KTH Royal Institute of Technology, Sweden
2 SICS Swedish Institute of Computer Science, Sweden

v

Fi%s)
KTH sics
1 RS g @:

,

’%%bxé?"

SweConsNet 2016, June 14

This research has been funded by LM Ericsson AB
and the Swedish Research Council (VR 621-2011-6229).

Inside a Typical Compiler

source
code

o
7’ < S ~
. - N assembly
optimizer
frontend p ~Z backend o code
7 1 ~
7’ ’ S > ~
e , ’ N JJ R .
7’ , S ~
instruction register instruction
selector allocator scheduler

Graph-based Instruction Selection
int f(int a) {
int b=a* 2;
int c=a* 4
return b + c;
} mac

pattern graph
matches (data-flow graph)

Task: Select matches such that
program graph program graph is covered
(data-flow graph)

State of the Art

m Program graphs per basic block

m Select instructions block-wise
(local instruction selection)

m Select using greedy heuristics
m Pattern graphs only capture data flow

Talk Overview

m A motivating example

m Novel program and instruction representations

m Constraint model for universal instruction selection
m Proof-of-concept experiments

m Conclusions and future work

A MOTIVATING EXAMPLE

Program Example

bb1:|i = Ol
i bb2:
turated t ddition:
Saturated vector addition /_’EE—F’
int i =0; bb3: T
while (i < N) { t1=ix4
intc=A[i]+B[i]; th=A+t;t3=B+1
if (MAX < c) a = load ty; b = load t3
c = MAX: —> c=a+b
C[i] = c: ’ if MAX < ¢
} e bb4: /T F\ bb5:
I_C:MAX|5 thh =C+ 1ty
store t4, C

~———— fi=i+1

control-flow graph

Instruction Examples

bb1:| i=0 |
bb2: £
m satadd pb3: . !
=1 4
b =A+t;t3=B+1
a = load t;; b = load t3
Difficult properties: c=a+b
m Incorporates control flow if MAX < ¢
m Extends across multiple T F
blocks bb4: / \ bb5:
|C: MAXl’ ty=C+ 1y
store t4, C
~— i=i+1

Instruction Examples

bb1:| i=0 |
bb2: E
——Lfi<N }——
bb3: T
t1=i%4
.add4 t2=A+t1:t3=B+t1
a = load t;; b = load t3
Difficult properties: c=a+b
m Must move computations if MAX < ¢
across blocks (global code T F
motion) bb4: / \ bb5:
m May incur additional copy [c = MAXPt, = C + t
overhead store t4, C
i1

Actual Instructions

m satadd
Common in DSPs

m add4
Intel, ARM, TI, ...

Architectures will only
become more complicated,
not less!

bbt:[i = O]

bb2:

— LT

=0

N

bb3: T

t1=i%4

b =A+t;t3=B+1
a = load t;; b = load t3

c=a+b

if MAX < ¢

bb4: /T F\ bb5:
|C:MAX|’ ty =C+ 1ty

store t4, C

~— li=i+1

Universal Instruction Selection

m Selects instructions for entire function
(global instruction selection)

m Selects instructions for both computations and branching
m Supports global code motion
m Takes data-copying overhead into account

Prerequisites:
m Representations that capture both data and control flow
m An expressive methodology, such as CP

PROGRAM AND INSTRUCTION
REPRESENTATIONS

Program Representatlon (Based on SSA)

block m

operation Q

control-flow graph s

A graph

° operation

datum \

Instruction Representation

satadd:

CONSTRAINT MODEL

Our Approach

rocessor attern graphs
_Processor, transformer P grap
instructions matches
matcher modeler solver
input
"% ftransformer A L)
program program graph

output
program

Decision Variables

sel(m) € {0,1}
place(m) ¢ B
def(d) B

loc(d) elL
succ(b) € B

Is a match m selected?

In which block is a match m placed?
In which block is a datum d defined
(made available)?

In which location is a datum d stored?
What is the block order?

Global Instruction Selection

m Every operation o in the program graph must be
covered by exactly one selected match:

> sel(m) =1

meMs.t.
occovers(m)

Global Code Motion

m Every datum d must be produced before being used. ..

Dominance

m A block b dominates another block b’ if every control-
flow path from entry block to b’ goes through b

m A block always dominates itself

Example:

dominates(b;) = {by}

dominates(b;) = {by, b, }
dominates(bs) = {by, b3}
dominates(b4) = {by,bs}

20

Global Code Motion

m Every datum d must be produced before being used,
meaning
d must be defined such that d dominates every
match m that uses d:

def(d) € dominates(place(m))

m For each definition edge b - - - d:
def(d) =b

m Remaining constraints:
(see paper for details)

21

Data Copying

m For every selected match m that enforces a location
requirement on a datum d-

sel(m) = loc(d) € stores(m,d)

22

Copy Extension of Program Graph

v — @

m When locations for v4 and v, can be the same,
select special null-copy pattern with zero cost

m Otherwise select appropriate copy instruction

23

Fall-through Branching

m All blocks must form a circuit:
circuit (Upcg{succ(b)})

m For each selected branch instruction m that falls

through to block b:
sel(m) = succ(place(m)) =b

24

Objective Function

B Minimize execution time:

Y freq(b)x Y. cycles(m)
beB meMst.
place(m)=b
where freq(-) is estimated execution frequency
(provided by the compiler)

25

Implied and Dominance Constraints

(see paper for details)

26

Branching Strategy

m Eagerly cover non-copy operations
» Try sel(m) =1 in non-increasing | covers(m)| order
(mimics maximum munch [Cattell 1978])
m Remaining decisions left to the solver

27

Limitations

m Redundant loads of constants
» Impact: Significant
» Fix estimate: Easy
m Cannot handle if-conversions (predicated instructions)

» Impact: None - significant (depends on hardware)
» Fix estimate: Difficult
(not even handle by state of the art)

28

EXPERIMENTS

Benchmarks

Input programs:
m 16 functions from MediaBench [Lee et al. 1997]

> More than 5 LLVM IR instructions

» No function calls or memory instructions

» Compiled and optimized using LLVM 3.4 (-O3 flag)

» Size of corresponding program graphs: 34-203 nodes

Target machines:
m MIPS32

1. Standard instructions
2. Expected outcome: No significant speedup over LLVM

m Fancy™ MIPS32

1. MIPS32 extended with SIMD instructions
2. Expected outcome: Some speedup over LLVM

30

Setup

m Model implemented in MiniZinc
m Solved with CPX 1.0.2
» Using Linux, Intel Core i7 2.70 MHz, 4 GB memory

MIPS32: Estimated Speedup over LLVM

30%

20%
10%
0%
-10%

-20%

m All functions solved to optimality

m Runtimes: 0.3-83.2 seconds (median 10.5 seconds)
m Geometric mean speedup: 1.4%

m Better cases: due to global code motion

m Worse cases: due to constant reloading

32

Fancy™ MIPS32: Additional Speedup

30%

20%

10%

0%
% S, Ko, o S, o K [\ [\ [N & N Z ?
@oo % % °% O, Wy %%, %Y Y, °%, °9, & % Y%, % <,
o@ \(\Qéz \Q‘S}\ \@O’ \90 \ AN AN
& NS, (4 Q. % R
b% % {e‘ Q 2, o S %, s

m All functions solved to optimality

m Runtimes: 0.3-146.8 seconds (median 10.5 seconds)

m Geometric mean speedup: 3%

m Observation: SIMDs not used in “obvious” cases
because that would actually degrade code quality

33

CONCLUSIONS AND
FUTURE WORK

Contributions

Due to limitations of state-of-the-art approaches, we have:

m Introduced novel, universal representations
» Captures both data and control flow

m Designed constraint model for universal instruction
selection
» Implements global instruction selection
» Selects instructions for both computations and branching
» Supports global code motion
» Takes data-copying overhead into account
m Conducted proof-of-concept experiments
Demonstrate that our approach:
» Handles small and medium-size input programs
» Yields results comparable with LLVM
» Supports sophisticated hardware (such as
SIMD instructions)

35

Future Work

m Address current model limitations

m Experiment with larger input programs and real
hardware (such as Intel X86, ARM, Hexagon)

m Integrate with existing constraint model for global
register allocation and instruction scheduling
[Castaneda Lozano et al. 2014]

36

EXTRA MATERIAL

Related Work

Instruction selection:

m Using tree-based program and pattern graphs
> [Glanville & Graham 1978], [Pelegri-Llopart et al. 1988], [Aho et al. 1989]
» Linear time, most guarantee optimality

m Extensions to DAG-based program graphs
> [Ertl 1999], [Ertl et al. 2006], [Koes & Goldstein 2008]
» Linear time, non-optimal

m Using IP and CP
> [Gebotys 1997], [Bednarski & Kessler 2006], [Wilson et al. 1994]

> [Bashford & Leupers 1999], [Martin et al. 2009], [Floch et al. 2010]
» Restricted to pattern trees/DAGs

38

Static Single Assighment (SSA) Form

bbt:[i1 = O
bb2:

i = pliy, i3)| F
(if i2 <N
m A compiler standard bb3: 1T
[Cytron et al. 1991] =i, 4
m Each variable must be tp=A+t;t3 =B+t
defined only once a = load t; b = load t;3
(fixed by renaming) c=a+b
m Use p-functions to if MAX < c
track renaming bb4- / T F\ bb5:
|C2 = MAXl’ c3 = plg, ¢)
ty =C+ t4
store t4, C3
———— i3 =iy +1

39

Global Code Motion

m Every non-selected match m is placed in the

bnuu block:
sel(m) < place(m) # by

m Every selected match m that incorporates control flow
must not move control operations elsewhere in the
program graph:

sel(m) = place(m) = entry(m)

m Every datum m defined by a selected match m must
be defined in either the block wherein m is placed, or
in a block spanned by m:

sel(m) = def(d) ¢ {place(m)} u spans(m)

40

Objective Function

B Minimize execution time:

Y freq(b)x > cycles(m)

beB meMst.
place(m)=b

where freq(-) is estimated execution frequency
(provided by the compiler)

m Minimize code size:

Y size(m)

meMst.
sel(m)=1

41

Implied Constraints

m Every datum d must be defined by exactly one
selected match m:

> sel(m) =1

meMst.
dedefines(m)

m If a datum d is defined in some block b, then some
selected match m must either be placed in b, or b be
spanned by m:

def(d) =b = sel(m) A b € {place(m)} u spans(m)

m If two matches m; and m, impose conflicting location
requirements on the same datum, select at most one
of them:

sel(my) +sel(m;) <1

42

Dominance Constraints

m Remove symmetric solutions due to equivalent
locations:

» Identify subsets S of values such that any solution
with loc(d) =v and v € S can be replaced by an
equivalent solution with loc(d) = max(S), for any
deD.

43

